

The CASSANDRA Project:

A 2nd Order CASE Tool in Prolog

Markus Schacher
KnowGravity Inc.
Badenerstrasse 808

8048 Zürich
Switzerland

Phone: ++41-(0)1/434'20'00
Fax: ++41-(0)1/434'20'09

Email: markus.schacher@knowgravity.com

Version: 1.1.2 / 6. April 2000

Abstract
This document describes the software engineering research project "Cassandra" developed at
KnowGravity Inc. in Zürich, Switzerland. Cassandra is an assistant that guides software
developers through the software development process. It analyzes project information held in
one of the many familiar UML-based CASE tools and derives issues to be clarified or
suggests the next steps to be done in the project.

Cassandra is a 100% Prolog application, i.e. user interface, knowledge base, persistency and
CASE tool access are all implemented in Prolog. This paper discusses important parts of the
functionality of Cassandra as well as some Prolog-related implementation issues and
experiences.

mailto:markus.schacher@knowgravity.com

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 2 © 2000, KnowGravity Inc.

1. Introduction

1.1 UML and CASE Tools
Since about 3 years the Unified Modeling Language, UML (OMG, 1999) has become the
agreed standard for modeling object oriented software systems. It allows modeling a software
system by different views (mainly diagrams) complementing each other. The main views (or
diagrams) defined by the UML are:

• Activity diagrams
are used for modeling business activities to be supported by the planned IT system

• Use case diagrams
show the main functionalities of the system to be developed (as a black box) from the user
perspective

• Class and object diagrams
show classes in the system to be developed, their properties and associations as well as
their instances

• State diagrams
show the behavior of a single object in terms of events, states and its (re-)actions

• Collaboration and sequence diagrams
show how multiple objects interact in order to provide a useful functionality to be
provided by the system to be developed

• Deployment and component diagrams
model the physical structure of the system to be developed in terms of hardware units and
software components.

To simplify the development of these diagrams, a large number of CASE tools (Computer
Aided Software Engineering tools) are available on the market. These tools provide facilities
to draw at least some of those diagrams and additionally try to keep them consistent based on
the fact, that they all should be different views of the same underlying model.

1.2 Cassandra
UML defines a large set of syntactic and semantic rules that a diagram or a set of diagrams
must adhere to. On the other hand, UML says very little about how these diagrams should be
used to develop a (highly complex) real-world application. Over years, KnowGravity Inc. and
its partners developed a number of techniques as well as the know-how required to elaborate
specifications and architectures using UML notation (i.e. its diagrams). So far, this know-how
has been taught in software engineering courses and applied in large IT projects coached by
KnowGravity's consultants. However, the high demand for coaching from KnowGravity's
clients was faced with the limited availability of consultants at KnowGravity Inc.

This situation led to the idea, to make the consultant’s know how wider available through a
knowledge-based system, called Cassandra (UCUassandra - an UAUssistant for USUystem
USUpecification UANDU URUequirements UAUnalysis). It is an experimental software system to support
software engineering based on techniques from the field of artificial intelligence. Cassandra
has been implemented using the programming language WIN-PROLOG (LPA, 1997) running
on a standard PC/Windows platform.

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 3 © 2000, KnowGravity Inc.

1.3 Related approaches
Instead of providing various editors to draw UML diagrams (as conventional CASE tools do),
Cassandra supports software developers in the usage of any conventional CASE tool in order
to guide them though the process of developing an application. However, some of the more
advanced conventional CASE tools also provide some kinds of assistants or wizards to
support the user in repetitive tasks. Others include process mentors or guides that are online
documentations of a generic software development process. In contrast to these approaches,
Cassandra

• is independent of any specific CASE tool

• provides guidance based on the actual state of a project or model in a CASE tool

• acts as a very generic container for software engineering know how.

Currently, not many similar approaches are known. On HTUhttp://www.asplake.demon.co.ukUTH, a
tool called Validator is published, that provides similar pattern analysis as Cassandra does for
developing data models.

2. Cassandra

2.1 Architecture
Cassandra consists of a basic platform application that can be extended by several extension
modules at runtime (see figure 1). These modules are added to the Cassandra core system by
simply copying its files into Cassandra's main directory without any need for reconfiguration
or even recompilation.

The size of the Cassandra application is currently about 7'000 lines of Prolog code, of which
about 3'000 lines are generic and thus highly reusable (module management, license
management, GUI handling, internationalization, and timing).

Figure 1: Cassandra's Architecture

Core Application

Cassandra’s
Repository

Input
Interfaces

Output
Interfaces

Agent Modules

Cassandra

CASE
Tools

CASE
Tools

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 4 © 2000, KnowGravity Inc.

• The Core Application
The Core Application provides some generic infrastructure functionality used by the
individual extension modules. At the core of it is Cassandra’s active Repository that stores
project information imported from various CASE tools.

• The Input Interfaces
An Input Interface is an extension module that is able to import project information from
an external CASE Tool into Cassandra’s Repository. An Input Interface provides its own
user interface that is plugged-in into the Core Application.

• The Agent Modules
An Agent Module is an extension module that implements some useful software
engineering functionality based on the information stored in Cassandra’s Repository. It
provides its own user interface that is plugged-in into the Core Application.

• The Output Interfaces
An Output Interface is an extension module that is able to export project information to an
external CASE Tool based on the decisions taken by an Agent Module. Output Interfaces
too provide their own user interface that is plugged-in into the Core Application.

2.2 The User Interface
Cassandra can either be started from within Windows or directly from within some CASE
tools. In any case, Cassandra's main dialog as shown in figure 2 is displayed.

Figure 2: Cassandra's Main Dialog

Basically, this dialog allows doing two things: to select the project to be investigated
(including the selection of the Input Interface, i.e. the CASE tool) and to select the Agent
Module that provides the actual investigation or assistance.

Selection of
Agent Module

Selection of
Input

Interface and
Source
Project

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 5 © 2000, KnowGravity Inc.

Currently, Input Interfaces for the following CASE tools are available (no Output Interfaces
have been developed so far):

• Artisan RTS V3.0 (XIARTRTS30)

• Select Enterprise V5.2 (XISELE52)

• Select SSADM V4.0 (XISELS40)

• Rational Rose 98 (XIROSE98)

All these Input Interfaces access the corresponding CASE Tools via OLE automation (a
standard on the Windows platforms for inter-application communication). In addition, an
Input Interface to the Repository's native file format is provided.

When the corresponding project data is available, the user can currently select from one of the
following Agent Modules that act on the project:

• XARVBOST
Performs a domain-level review of the static structure of the business object model.

• XARVUCST
Performs a domain-level review of the static structure of the use case model.

• XADWH
Generates a first-cut data warehouse design out of the model of an operational IT-system.

By now, the result of such an investigation is presented as a textual report. Later, it is intended
to provide a more interactive version of these Agent Modules so that they communicate
interactively with the user.

2.3 The Repository
Cassandra's Repository can be regarded as an object oriented database system implemented in
Prolog. Its structure is defined by a meta model that defines the software engineering concepts
Cassandra is dealing with (e.g. classes, states, use cases and so on). Since every CASE tool is
based on a (at least) slightly different definition of those concepts, Cassandra's meta model
represents our (KnowGravity Inc.) unified view of software engineering that can be mapped
on any CASE tool supported by Cassandra.

The Repository's meta model is defined by a set of simple Prolog facts that allow the
specification of meta classes, their attributes, associations and operations as well as
inheritance associations among them. As an example, figure 3 shows a very simple (non
UML) meta model describing a fragment for representing a data model.

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 6 © 2000, KnowGravity Inc.

Model Element

Name

Attribute

Default

Entity Basic Type

Definition
1

*
Attributes

Owner
1

*

Type

Figure 3: A simple meta model

The Repository definition of the meta model in figure 3 is shown in listing 1. A meta model
definition may consist of the following elements:

1. Meta model name and version declaration

2. Basic data type declarations

3. Meta type declarations

4. Subtype/supertype association declarations

5. Partition declarations

A meta object type declaration usually consists of a set of property declarations. Each
property may be an attribute or reference to another meta object type. Such a reference
declaration may either be declared as a simple item (default), set or bag.

mm_version('A very simple meta model', '0.1.0', ['0.1.*']).

name(Name) :- atom(Name).

rep_type(model_element, [name(name)]).
rep_type(entity, [attributes(ref(attribute), set)]).
rep_type(attribute, [default,owner(ref(entity)),type(ref(basic_type))]).
rep_type(basic_type, [definition]).

rep_isa(entity, model_element).
rep_isa(attribute, model_element).
rep_isa(basic_type, model_element).

rep_partition(structure, [entity, attribute]).

Listing 1: The definition of the simple meta model

The meta objects declared in this way may be manipulated by a set of built-in access
predicates. These can be classified as follows:

• predicates to create, find, inspect, and delete meta objects

• predicates to manipulate attributes

• predicates to manipulate associations

• predicates to initialize, load and unload the Repository.

ʌ
ʎ ʏ

ʒ
ʔ

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

In addition to the predefined object access predicates, user-defined operations may be
declared for a meta object type. User defined operations are defined as ordinary Prolog
predicates that have the meta object type and the object ID as their first two arguments.

Any object operation (built-in or user-defined) may be invoked using the dot operator in one
of the following forms:

ObjectId.Operation(Parameters) or (ObjectType, ObjectId).Operation(Parameters)

Based on the simple meta model shown above, the program in listing 2 instantiates a system
model containing one single entity customer with attributes name, birthday and
address.
test :-
 rep_init,

 % create objects
 (basic_type, Text).new([name=text]),
 (basic_type, Date).new([name=date]),
 (entity, Customer).new([name=customer]),
 (attribute, Name).new([name=name]),
 (attribute, Birthday).new([name=birthday]),
 (attribute, Address).new([name=address]),

 % set some attributes
 Text.set_prop(definition='Any text of any length'),
 Date.set_prop(definition='Any date in format DD-MM-YY'),
 Name.set_prop(default='(no name)'),
 Address.set_prop(default=''),

 % create unidirectional associations
 Name.set_prop(type=Text),
 Birthday.set_prop(type=Date),
 Address.set_prop(type=Text),

 % create bi-directional associations
 link_md(Customer, attributes, Name, owner),
 link_md(Customer, attributes, Birthday, owner),
 link_md(Customer, attributes, Address, owner),

 % display objects
 Text.show,
 Date.show,
 Customer.show,
 Name.show,
 Birthday.show,
 Address.show,

 % delete created objects
 Text.del,
 Date.del,
 Customer.del,
 Name.del,
 Birthday.del,
 Address.del.

Listing 2: An example predicate that uses the simple meta model

One of the interesting features of Cassandra's Repository is that it may also lookup objects
using the same syntax as shown above. For example the call

?- OID.get_prop(name=abc).

returns all objects that have "abc" as their name, irrespective of which type they are, whereas
the call

?- (attribute, OID).get_prop(name=abc).

returns all objects that are of type "attribute" that have "abc" as their name.

 7 © 2000, KnowGravity Inc.

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 8 © 2000, KnowGravity Inc.

2.4 Cassandra's Meta Model
However, the actual meta model of Cassandra is much more complex than the one shown in
figure 3. Figure 4 shows the part of Cassandra's current meta model that represents an
extended UML class model.

aspect

aspect
binary_assoc
fullname
new_feature
new_binary_assoc
supertype

generalizable_element
{abstract}

abstract
external_id

concept

binary_assoc
direct_detail
direct_master
indirect_detail
indirect_master

feature
{abstract}

owner_scope
visibility

association_end

aggregation
external_id

interface

external_id

specialization

disjoint
incomplete
external_id

association

external_id
binary_assoc
master_detail

attribute

default
external_id

operation

external_id

class

active
language

model_element
{abstract}

name
description
derived
package_visibility
stereotype

parameter

direction
default
external_id

datatype

specification

package

aspect_exits
get_or_new
new_aspect
new_specialisation

structural_feature
{abstract}

multiplicity
changeability
ordered

viewpointclassifier
{abstract}

element_import

alias
visibility
external_id

type

1

*

1

*

**
generalizationssubtype

1 *
specializationssupertype

1

2..*

*

*

0..1

0..1

0..1

*

implementation

1

*
formal_parameter

1 *
type

1*
type

1

*

namespace

owned_element

1

*

1

*

imported_element

1

*

Figure 4: The fragment "Object Statics" of the Cassandra meta model

In addition to the meta model fragment shown in figure 4, Cassandra's meta model is
partitioned into the following areas:

• Object Dynamics
Covers state diagrams for individual objects

• Object Interactions
Covers collaboration and sequence diagrams

• External Design
Covers business models and use case diagrams

• Implementation
Covers component and deployment diagrams

• Process
Covers activities of the development process as well as its results.

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

2.5 The XARVBOST Agent
As an example, Cassandra's Agent Module XARVBOST is explained in more detail. This
Agent Module provides a pattern-based review of the static structure of any given business
object model. There are some common structures (or patterns) known on objects (classes) and
associations that raise domain level questions (see figure 5 for two typical patterns).

Triangle Pattern: Double-V Pattern:

Top

Bottom

Intermediate

Pattern:

Top

Bottom

Intermediate

If the direct relationship between Bottom and Top can
always be derived by the indirect relationships via
Intermediate, then the direct relationship is obsolete:

1

*

1

*

1

*

1

*

1

*

Master1 Master2

Detail1

Detail2

Pattern:

Master1 Master2

Detail1

Detail2

Between the two details of a Double V Structure often a relationship
exists. If the cardinality of this relationship is one to many, the
addition of this relationship results in two Triangles:

1
*

1
*

1

*

1

*

1
*

1
*

1

*

1

*

1

*

Figure 5: Triangle and Double-V Patterns

These structures are purely geometric shapes that raise business level questions. A business
object model can be searched for these patterns and the resulting questions can be asked to the
user. Typical questions derived from such patterns are whether an object or an association is
missing or whether an object or association is obsolete.

Beside the basic forms of these patterns as shown in figure 5, more complex forms are known
that include indirect or special associations as well as inheritance associations between
objects. These forms still have the same characteristics as Triangle and Double-V patterns
explained above but are much harder to find. Further details about the technique to apply
these structures can be found in our course materials (KnowGravity, 1997).

When the simple sample business object model shown in figure 6 is presented to Cassandra
for review, in a first step its structure is transferred from the CASE tool into Cassandra's
Repository (via the corresponding Input Interface).

 9 © 2000, KnowGravity Inc.

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 10 © 2000, KnowGravity Inc.

truck

place

road

route

customer

orderplanstay

standard order

individual order

1

*

at

of

1

*at

for
1

*

from

origin

1

*

destination

to

1

*

for

part
of

1

* at

place
for

1

*for

scheduled
in 1

*

billed
as

used
in

1

* of

owner
*

*for

used
in

1 *
for

part
of

1

*
from

origin

1

*

destination

to

Figure 6: An example Business Object Model

Then, the options dialog (figure 7) is shown to the user. This options dialog allows the
selections of patterns to be searched as well as the specification of the desired output type for
the analysis. Two different types of reports are available:

• The Domain Expert Report provides the domain level questions derived from the
patterns found in the model in a natural language selectable by the user.

• The Analyst Report presents the patterns found by expressing these patterns in terms of
their geometric structure comprising objects and associations among them.

Figure 7: The XARVBOST Main Dialog

Figure 8 shows the Domain Expert Report produced after analyzing the example business
object model shown in figure 6.

... and the
output options

The patterns
options

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 11 © 2000, KnowGravity Inc.

XARVBOST: Review of business object statics (Domain Expert)
===
CASSANDRA V1.1.0 / 26-OCT-99
XARVBOST V0.1.2 / 26-OCT-99

 Source : File
 Project : d:\prolog\cassandra\deployment v1-1-0\fast-english.rep
 Directory : d:\prolog\cassandra\deployment v1-1-0\
 Last change : 27.10.1999 / 17:44: 6.00

Potentially redundant associations

If the statement "stay at one place" has the same meaning as the
 statement "stay at one road to one place",
 the direct association between "place" and "stay" is redundant.
 ... or if it has the same meaning as the statement
 "stay at one road from one place".

Potentially missing associations

Is there an association missing between "individual order" and "stay"?
Is there an association missing between "standard order" and "stay"?

Figure 8: A Domain Expert Report

3. Some Implementation Concepts
This section focuses on some issues that might be specifically of interest to Prolog and/or
more specifically WIN-PROLOG programmers.

3.1 Module Management
Cassandra has been built in a very modular way. These modules are managed by a module
handling system developed earlier by the author. This module handling system provides the
following features:

• Module version, dependency and compatibility management

• Multi-language (human languages) support

• Prolog operator declarations

• Compile-time and/or runtime module loading

In this module handling system, a module may consist of one to three individual files:

• The main file contains the predicate implementations provided by the module and may
either be in source form (*.PL) or compiled object form (*.PC).

• The optional message file (*.msg) contains a number of Prolog facts that declare message
texts used by the module in one or more international languages

• The optional operator file (*.opr) declares any operators needed (or provided) by the
module.

As an example, Cassandra's Repository is a module composed of the files REPOSITORY.PC,
REPOSITORY.MSG and REPOSITORY.OPR. Figure 9 shows the Module Details Dialog of
Cassandra that displays details about the currently loaded modules.

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 12 © 2000, KnowGravity Inc.

Figure 9: The Module Details Dialog

In order to provide an automatic compatibility check among different modules loaded by an
application, each module must declare the following information:

• its name, author and creation date

• its current version number

• a (possibly empty) list of version numbers to that the current version of the module is
backward compatible

• a (possibly empty) list of other modules that are used by this module, optionally including
the required version number of the required module.

A module declares this information by calling the predicate mv/6. The arguments of mv/6
are as follows:

mv(Module, Version, Date, Author, BackwardCompatibility, RequiredModules)

This declaration (i.e. the invocation of mv/6) must be performed as soon as the module has
been completely loaded, which can be ensured by declaring it using the WIN-PROLOG built-
in predicate initialization/1. Listing 3 shows an example declaration of a module
DEMO including all elements listed above.
:- initialization(mv(demo, '2.1.3', '25-NOV-99', 'M. Schacher', ['0.3.*', '1.0.*'],
 [system('1.2.0'), gui, strings, licencing('1.1.3'), common])).

... the actual module code starts here

Listing 3: A module declaration

The main module of an application actually loads all required modules by using the predicate
load_modules/2. This can happen either at compilation time of the main module (static
loading) or at runtime of the application (to dynamically load additional modules). See Listing
4 for an example.
:- load_modules([licencing, strings, gui, timing], [path('c:\prolog'), log]).

Listing 4: Loading modules

In any case, when all modules have been loaded, load_modules/2 performs a
compatibility check among all loaded modules based on their version information. Any

 moving the scrollbar
shows more details
about each module

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

incompatibilities or missing modules are reported as warnings or error messages to the user
(see figure 10 as an example).

Figure 10: An incompatibility warning

Cassandra uses dynamic loading of modules at runtime to allow an easy addition and/or
removal of Input Interfaces and Agent Modules. At startup time, any module that is found in
Cassandra's main directory and that has a name starting with the letter "X" (e.g. "XIROSE98"
or "XARVBOST"), is automatically loaded and checked for compatibility against all other
modules by using load_modules/2.

3.2 Extendable User Interface
Cassandra has been implemented completely in WIN-PROLOG, including its user interface.
Since Cassandra dynamically loads extension modules at startup time, at least some parts of
the user interface depend on the currently loaded modules. Figures 11 and 12 show such an
effect in case of different Input Interfaces. Depending on the selected Input Interface (source),
different options apply to that Input Interface.

Selection of
Input

Interface

Options of
Input Interface

for Select
Enterprise

Figure 11: The Source Selection Dialog for Select Enterprise

 13 © 2000, KnowGravity Inc.

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 14 © 2000, KnowGravity Inc.

Figure 12: The Source Selection Dialog for Rational Rose

However, the user interface elements in the current options group are part of the actual Input
Interface and are thus implemented in the corresponding (dynamically loaded) module. This
means that the implementation of the dialog shown above is distributed among several
modules:

• The dialog frame including the combobox to select the Input Interface is implemented in
Cassandra's Core Application (also called the master module).

• All items inside the options group are implemented in one of the dynamically loaded Input
Interface modules (also called the client module).

To achieve this cooperation among different modules sharing one single dialog, a protocol
among modules has been defined that includes

• the client area of a master dialog that may be used by a client module

• the activation of a client module, that causes the creation and handling of the client-
specific dialog items

• the deactivation of a client module, that causes the destruction of the client-specific dialog
items.

Listing 5 shows a fragment of the dialog handler that processes the event of changing the
selection of the Input Interface combobox in the master dialog: the old Input Interface is
deactivated by the call xdlg_CASS_source(XI_old, off) and then the new Input
Interface is activated by the call xdlg_CASS_source(XI_new, on).
xdlg_CASS_source_handler((xdlg_CASS_source,590), msg_select, _, _) :-
 !,
 get_tstate(cass_main, current_xi, XI_old), % determine the old client
 xdlg_CASS_source(XI_old, off), % ... and turn in off
 lbx_get_selected((xdlg_CASS_source,590), Source, _), % read the combobox
 xi_id(XI_new, Source), % ... get the new client id
 set_tstate(cass_main, current_xi, XI_new), % ... remember it
 xdlg_CASS_source(XI_new, on). % ... and turn it on

Listing 5: Client dialog activation and deactivation

... the Options
section changes

accordingly

When the
Input

Interface is
changed...

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

3.3 Pattern Analysis
One of the more challenging tasks has been the development of the pattern analysis described
in section “2.5 The XARVBOST Agent”. The pattern search algorithms are implemented as
highly declarative operations of the meta model objects (see also figure 4). For example,
listing 6 shows a slightly simplified version of the main predicate that searches all
associations playing the role of the direct association in a triangle.
search_triangles :-
 MaxOrder=9,
 (association, Assoc).triangle(Direct, Indirect, MaxOrder, Order),
 write((Assoc, Direct, Indirect, Order)), nl,
 fail.
search_triangles.

Listing 6: Searching for triangles

However, the complexity of the search algorithm is buried inside the user-defined operation
triangle/4 of the association object. Listing 7 shows some details of this operation.
It is based on the user-defined operations master_detail/2 of class association and
indirect_detail/6 of class concept. master_detail/2 returns the master and
detail concept of an association including the corresponding cardinalities (zero to one, zero
to many, etc.). indirect_detail/6 returns any concept that is indirectly related to the
concept under investigation via a path of associations.
triangle(association, Assoc, Direct, Indirect, MaxOrder, Order) :-
 (association, Assoc).master_detail([TopC, MC], [BottomC, _]),
 Direct = [node(TopC), link(Assoc), node(BottomC)],
 (concept, TopC).indirect_detail([_, MC], Indirect, _, BottomC, Direct, MaxOrder),
 length(Indirect, NIndirect), Order is (NIndirect-3)/2, Order>0.

Listing 7: The operation triangle/4 (simplified)

Passing the Direct path to indirect_detail/6 ensures that the direct association will
never be part of the indirect path. Further, an important condition is that the cardinalities of
both direct and indirect paths must be the same, which is achieved by the shared variable MC
for master cardinality). However, the real work is done in the two operations
master_detail/2 and indirect_detail/6. Since associations are not attached to
concept but to aspect (see figure 4 again) these two predicates are responsible to provide
this transformation towards the meta model. Listing 8 finally shows how this is actually done
in the case of master_detail/2. This predicate also determines the correct master and
detail concepts depending on the cardinalities of the association.
master_detail(association, Assoc, [MasterC, MasterCard], [DetailC, DetailCard]) :-
 (association, Assoc).binary_assoc([Aspect1, Role1, Card1], [Aspect2, Role2, Card2]),
 ((Card1=[1, 1], Card2\=[1, 1]) -> % *** Aspect1 is Master
 MasterA=Aspect1, MasterCard=Card1, DetailA=Aspect2, DetailCard=Card2
 ; ((Card1\=[1, 1], Card2=[1, 1]) -> % *** Aspect2 is Master
 MasterA=Aspect2, MasterCard=Card2, DetailA=Aspect1, DetailCard=Card1
 ; fail)), % *** Master/Detail not decidable
 (aspect, MasterA).get_prop(concept=MasterC),
 (aspect, DetailA).get_prop(concept=DetailC).

binary_assoc(association, Assoc, [Aspect1, Role1, Card1], [Aspect2, Role2, Card2]) :-
 (association, Assoc).get_prop(association_ends=[AE1, AE2]),
 (association_end, AE1).get_props([aspect=Aspect1, name=Role1, multiplicity=Card1]),
 (association_end, AE2).get_props([aspect=Aspect2, name=Role2, multiplicity=Card2]).

Listing 8: The operation master_detail/2 (simplified)

 15 © 2000, KnowGravity Inc.

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 16 © 2000, KnowGravity Inc.

As can been seen from the explanations above, searching a pattern involves many levels of
Repository predicates. In Cassandra, these levels are distributed among several modules:

• The specific operations (like triangle/4) are implemented in the Agent Module
XARVBOST that actually does the pattern analysis.

• The generic operations (like master_detail/2 and binary_assoc/2) are
implemented as generally reusable operations in the module that represents Cassandra's
meta model.

• The Repository operations (like get_prop/1) are part of Cassandra's Repository, which
is a module of its own.

This finally means that the actual program performing the pattern analysis is composed at
startup time of Cassandra. In other words: Since the Agent Modules are loaded at Cassandra's
startup time, the actual capabilities of each meta object type are built dynamically and depend
upon the currently loaded extension modules!

4. Experiences

4.1 OLE Automation
When the development of the first ancestors of Cassandra was started, there was no way in
WIN-PROLOG to communicate with another application via OLE automation. As a
consequence, the author started to develop a DLL in C++ that adds this capability into WIN-
PROLOG via WIN-PROLOG's extensibility interface.

After some discussions with LPA (the developer of WIN-PROLOG), it turned out that such a
capability could also be of interest to other developers using WIN-PROLOG, for example to
control any Microsoft Office application (e.g. Word) from within a Prolog program. For that
reason, LPA integrated an OLE automation interface into the core of WIN-PROLOG and
made it generally available. It is based on the original concepts of the author's OLE DLL, but
it is today much more robust than the original one.

4.2 Module Management
The module management subsystem described in section "3.1 Module Management" has been
first implemented by the author on another Prolog implementation (Daum, 1989) and then
ported to LPA's WIN-PROLOG. This raised two difficulties:

• WIN-PROLOG identifies files currently loaded by their primary name only, ignoring the
file extension. This caused some trouble in separating modules into code files, message
files and operator files.

• There is no (official) way to hide atoms in a module of WIN-PROLOG. This bears the
danger that two atoms with the same name may be defined in different modules.
Especially when more than one programmer is involved, this is not unlikely to happen. On
the other side there are situation where a specific atom is deliberately needed across more
than one module. It turned out, that in WIN-PROLOG depending on how such an atom
has been created, atoms of the same name do not unify! The problem is not so much
specific to WIN-PROLOG: There needs to be a clear standard that defines the exact
semantics of modules in a Prolog application.

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 17 © 2000, KnowGravity Inc.

4.3 User Interface
WIN-PROLOG provides a set of built-in predicates and a simple dialog editor that allows to
build all components of a simple graphical user interface without the need of any other
programming language. Using these capabilities the author was able to build Cassandra as a
standalone application that is 100% implemented in Prolog. However, more advanced GUI-
elements such as tabbed dialogs are not directly available.

4.4 Repository Implementation
Cassandra's Repository can be considered as a highly declarative object oriented language. It
turned out (as in several projects before) that Prolog is extremely powerful to implement new
programming languages having their own semantics and syntax.

Especially the creation of languages with a highly declarative character can be implemented
very elegantly in Prolog. As it has been shown in section "3.3 Pattern Analysis", the object
operation triangle/4 is purely declarative: it simply says that a given association plays
the role of a direct association in a triangle. It can be used with any of its argument free or
instantiated (except MaxOrder that must be instantiated).

Even the arguments identifying the association can be left free: the following call returns any
direct association in a triangle with a maximum order of 9:

?-(association, Assoc).triangle(Direct, Indirect, 9, Order)

4.5 Performance
The performance of Cassandra's Repository has been extensively tested. Below, some of the
results on a Pentium III/500 machine are summarized:

• Object creation: about 0.12ms (for simple objects) to about 2.4ms (for complex objects)

• Object deletion: about 0.35ms (for simple objects) to about 2.79ms (for complex objects)

• Property setting: about 0.22ms (for local properties) to about 0.49ms (for inherited
properties)

• Operation invocation: about 0.009ms (for early binding) to about 1.43ms (for late binding)

• Object lookup: about 0.04ms (for simple lookups) to more than 14.88ms (for complex
lookups)

These measures do not look too bad. However, since some very complex algorithms are
running on top of these Repository predicates (such as the pattern analysis of XARVBOST),
they can never be fast enough.

The sample business object model shown in figure 6 requires on a Pentium III/500 machine
about 5½ seconds to find all triangles and about 15 seconds to find all Double-Vs.
Unfortunately the time required for such pattern analyses does not increment linearly with the
number of business objects: Second order Triangle analysis for a model containing 88
business objects lasted about three hours on a Pentium III/500 and 9½ hours for a first-order
Double-V analysis.

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

4.6 By-products
During development of Cassandra, several generally useful by-products have been developed.
First of all, Cassandra's Repository is becoming a product of its own. It can be used as a
general object oriented extension for any Prolog application. Furthermore, it may be used as a
database capable of easily simulating an application modeled in a CASE tool.

Another by-product of Cassandra is a handy regression tester mainly used during the
development of the Repository (see figure 13).

It is fully integrated into WIN-PROLOG's development
environment and provides the following features:

• recording (console) output of predicates to be tested

• replaying of tests and automatic comparison of
output against pre-recorded output

• manual comparison of replayed output against pre-
recorded output

• storage of tests and test results in a persistent
database

• individual tests can be combined into test groups
for batch testing

• non-modal user interface can be kept open in the
development environment.

In ad
Cassa

• S
Im
so

• G
Im

• S
Im

• T
Im

• L
Im

Fig

ure 13: The Regression Tester
 18 © 2000, KnowGravity Inc.

dition, several general purpose module have been developed that are reusable outside
ndra. These are mainly:

YSTEM
plements module management, multi-language text handling channel-based I/O and
me general purpose predicates.

UI
plements some reusable dialogs and some general GUI related predicates.

TRINGS
plements some predicates to process strings and atoms.

IMING
plements some predicates to perform time and date calculations.

ICENCING
plements a flexible mechanism for licensing applications.

 The CASSANDRA Project: A 2nd Order CASE Tool in Prolog

 19 © 2000, KnowGravity Inc.

5. Summary and Next Steps
Cassandra is still a software engineering research project. Currently, it is mainly used by our
own consultants to simplify their jobs working on real projects. We still consider Cassandra
as our personal weapon that differentiates us from our competitors. However, the recent
version of Cassandra has been given to some of our customers for a very restricted beta test. It
is planned to publish a public domain version of Cassandra on our web site (KnowGravity,
2000) later this year.

Within the next few months, it is planned to implement the following Agent Modules to
expand Cassandra's software engineering capabilities:

• XAAPI
Provides some support in application partitioning and integration.

• XAMODBO
Actively supports the user in identifying and modeling business objects.

• XAMODED
Actively supports the user in identifying and modeling business activities and use cases.

• XAPGIS
Implements an active process guide for information systems development.

It is further planned to integrate a multi-language rule-based inference engine into Cassandra.
This would allow an improved support for project situation analysis and diagnosis. Finally, in
the long terms, a simulation engine should allow to execute a specification in UML without
the need of one single line of code. A similar tool based on structured analysis has been
developed nearly ten years ago by the author (Schacher, 1991).

The ultimate vision for Cassandra is that it may some day replace our consultants completely.
We then can send Cassandra to help our customers with their project instead we go by
ourselves. The only remaining question then is: How do we earn our money?

6. References
(KnowGravity, 1997) KnowGravity Inc.: UML course material, 1997-1999

(KnowGravity, 2000) Web site of KnowGravity Inc.: HTUwww.knowgravity.comUTH

(Daum, 1989) Dr. Berthold Daum: Salix Prolog 2 Professional, Heim Verlag, 1989

(LPA, 1997) Logic Programming Associates Ltd.: WIN-PROLOG (user
documentation) , V3.500, 1997

(OMG, 1999) OMG: Unified Modeling Language Specification, Version 1.3, June
1999

(Schacher, 1991) M. Schacher: SESAM Benutzerhandbuch, Version 0.6, 1991

	Introduction
	UML and CASE Tools
	Cassandra
	Related approaches

	Cassandra
	Architecture
	The User Interface
	The Repository
	Cassandra's Meta Model
	The XARVBOST Agent

	Some Implementation Concepts
	Module Management
	Extendable User Interface
	Pattern Analysis

	Experiences
	OLE Automation
	Module Management
	User Interface
	Repository Implementation
	Performance
	By-products

	Summary and Next Steps
	References

